今日看点

用Python对沉默的真相3万+弹幕进行情感分析

发表于话题:沉默的真相解析
发布时间:2021-06-09

作者:J哥

源自:菜J学Python

本文将运用文本挖掘技术,对最近热播剧《沉默的真相》弹幕数据进行深入分析,希望对大家有一定的启发。
本文数据分析思路及步骤如下图所示,阅读本文需要10min,您可在「快学Python」公众号后台回复文本挖掘获取弹幕数据进行测试。

一、数据获取

本文仅提供核心代码:

from xml.dom.minidom import parse
import xml.dom.minidom
def xml_parse(file_name):
    DOMTree = xml.dom.minidom.parse(file_name)
    collection = DOMTree.documentElement
    # 在集合中获取所有entry数据
    entrys = collection.getElementsByTagName("entry")
    print(entrys)
    result = []
    for entry in entrys:
        content = entry.getElementsByTagName('content')[0]
        print(content.childNodes[0].data)
        i = content.childNodes[0].data
        name = entry.getElementsByTagName('name')[0]
        print(name.childNodes[0].data)
        j = name.childNodes[0].data
        dd = [j,i]
        result.append(dd)
        print(result)
    return result

二、数据清洗

1.导入数据分析库

#数据处理库
import numpy as np
import pandas as pd
import glob
import re
import jieba 

#可视化库
import stylecloud
import matplotlib.pyplot as plt 
import seaborn as sns
%matplotlib inline
from pyecharts.charts import *
from pyecharts import options as opts 
from pyecharts.globals import ThemeType  
from IPython.display import Image 

#文本挖掘库
from snownlp import SnowNLP
from gensim import corpora,models

2.合并弹幕数据

《沉默的真相》共12集,分集爬取,共生成12个csv格式的弹幕数据文件,保存在danmu文件夹中。通过glob方法遍历所有文件,读取数据并追加保存到danmu_all文件中。

csv_list = glob.glob('/菜J学Python/danmu/*.csv')
print('共发现%s个CSV文件'% len(csv_list))
print('正在处理............')
for i in csv_list:
    fr = open(i,'r').read()
    with open('danmu_all.csv','a') as f:
        f.write(fr)
print('合并完毕!')

3.重复值、缺失值等处理

#error_bad_lines参数可忽略异常行
df = pd.read_csv("./danmu_all.csv",header=None,error_bad_lines=False) 
df = df.iloc[:,[1,2]] #选择用户名和弹幕内容列
df = df.drop_duplicates() #删除重复行
df = df.dropna() #删除存在缺失值的行
df.columns = ["user","danmu"] #对字段进行命名
df

清洗后数据如下所示:

4.机械压缩去重

机械压缩去重即数据句内的去重,我们发现弹幕内容存在例如"啊啊啊啊啊"这种数据,而实际做情感分析时,只需要一个“啊”即可。

#定义机械压缩去重函数
def yasuo(st):
    for i in range(1,int(len(st)/2)+1):
        for j in range(len(st)):
            if st[j:j+i] == st[j+i:j+2*i]:
                k = j + i
                while st[k:k+i] == st[k+i:k+2*i] and k                    k = k + i
                st = st[:j] + st[k:]    
    return st
yasuo(st="啊啊啊啊啊啊啊")

应用以上函数,对弹幕内容进行句内去重。

df["danmu"] = df["danmu"].apply(yasuo)

5.特殊字符过滤

另外,我们还发现有些弹幕内容包含表情包、特殊符号等,这些脏数据也会对情感分析产生一定影响。


特殊字符直接通过正则表达式过滤,匹配出中文内容即可。

df['danmu'] = df['danmu'].str.extract(r"([\u4e00-\u9fa5]+)")
df = df.dropna()  #纯表情直接删除

另外,过短的弹幕内容一般很难看出情感倾向,可以将其一并过滤。 df = df[df["danmu"].apply(len)>=4]
df = df.dropna() 

三、数据可视化

数据可视化分析部分代码本公众号往期原创文章已多次提及,本文不做赘述。从可视化图表来看,网友对《沉默的真相》还是相当认可的,尤其对白宇塑造的正义形象江阳,提及频率远高于其他角色。

1.整体弹幕词云

2.主演提及

四、文本挖掘(NLP)

1.情感分析

情感分析是对带有感情色彩的主观性文本进行分析、处理、归纳和推理的过程。按照处理文本的类别不同,可分为基于新闻评论的情感分析和基于产品评论的情感分析。其中,前者多用于舆情监控和信息预测,后者可帮助用户了解某一产品在大众心目中的口碑。目前常见的情感极性分析方法主要是两种:基于情感词典的方法和基于机器学习的方法。
本文主要运用Python的第三方库SnowNLP对弹幕内容进行情感分析,使用方法很简单,计算出的情感score表示语义积极的概率,越接近0情感表现越消极,越接近1情感表现越积极。

df['score'] = df["danmu"].apply(lambda x:SnowNLP(x).sentiments)
df.sample(10) #随机筛选10个弹幕样本数据

(1)整体情感倾向

plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置加载的字体名
plt.rcParams['axes.unicode_minus'] = False   # 解决保存图像是负号'-'显示为方块的问题 
plt.figure(figsize=(12, 6)) #设置画布大小
rate = df['score']
ax = sns.distplot(rate,
             hist_kws={'color':'green','label':'直方图'},
             kde_kws={'color':'red','label':'密度曲线'},
             bins=20) #参数color样式为salmon,bins参数设定数据片段的数量
ax.set_title("弹幕整体情感倾向   绘图:「菜J学Python」公众号")
plt.show

(2)观众对主演的情感倾向

mapping = {'jiangyang':'白宇|江阳', 'yanliang':'廖凡|严良', 'zhangchao':'宁理|张超','lijing':'谭卓|李静', 'wengmeixiang':'李嘉欣|翁美香'}
for key, value in mapping.items():
    df[key] = df['danmu'].str.contains(value)
average_value = pd.Series({key: df.loc[df[key], 'score'].mean() for key in mapping.keys()})
print(average_value.sort_values())

由各主要角色情感得分均值可知,观众对他们都表现出积极的情感。翁美香和李静的情感得分均值相对高一些,难道是男性观众偏多?江阳的情感倾向相对较低,可能是观众对作为正义化身的他惨遭各种不公而鸣不平吧。

2.主题分析

这里的主题分析主要是将弹幕情感得分划分为两类,分别为积极类(得分在0.8以上)和消极类(得分在0.3以下),然后再在各类里分别细分出5个主题,有助于挖掘出观众情感产生的原因。

首先,筛选出两大类分别进行分词。

#分词
data1 = df['danmu'][df["score"]>=0.8]
data2 = df['danmu'][df["score"]

标签组:[python] [情感分析] [danmu

本文来源:https://www.kandian5.com/articles/30376.html

相关阅读

贾敬身上有多少谜团

贾敬,中国古典小说曹雪芹写的《红楼梦》中的人物,宁国公贾演的孙子,京营节度使世袭一等神威将军贾代化的次子,京营节度使世袭一等神威将军贾代化的次子,贾珍之父。是丙辰科进士,一味好道,在都外玄贞观修炼,烧...

2025-04-15

《红楼梦》中的宁国府是指哪里

宁国府是《红楼梦》中宁国公的府邸。宁国府作为一级地方府始于南宋乾道二年(公元1166年),在此之前又名宣州、宣城郡、宁国军。而《红楼梦》里面所写的宁国府,是贾府里面的一府,另一府为荣国府,宁国府是高于...

2025-04-15

聊斋志异里的小髻是什么故事

《小髻》是清代小说家蒲松龄创作的文言短篇小说。狐对长山居民说,过几天就会搬来和他做邻居。狐不会想到,这句话几乎带来灭门之灾。狐大概以为,人会善待邻居,远亲不如近邻。甚至可能天真的认为,还会“各复延至其...

2025-04-15

古人的生活条件到底有多苦

在当下,很多历史类畅销读物都千篇一律从皇帝、权臣的视角来看待古代社会,从平民视角看待社会的作品少之又少,以至于很多人对古人的生活条件有所误判,认为人人在古代都可以三妻四妾、有下人伺候。那么,古代平民生...

2025-04-15

蛰龙是什么意思

《蛰龙》是清代小说家蒲松龄创作的文言短篇小说。曲迁乔,号带溪,周村黄家渡口庄人。家中原来略有田产,后来逐渐败落,父亲是穷书生,只能维持温饱。曲迁乔自幼喜欢读书,但年纪很大了才考中举人。1577年(明万...

2025-04-15

聊斋志异戏术赏析

《戏术》是清代小说家蒲松龄创作的一篇小说。故事概要《戏术》古代俗称“戏法”,在现在称为“魔术”。此文由两个简短的小故事组成,虽然短,却像麻雀一样五应俱全,描写得非常到位,这也充分展现了蒲松龄的写作功底...

2025-04-15

日本花魁到底是什么样的存在

近年来,日本各大影楼盛行和服体验,其中最受欢迎的便是花魁系列。虽然现在的日本不再有花魁,然而花魁的形象仍然影响着现今的日本文化。那么花魁到底是怎样的一种存在呢? 花魁(日语读:おいらん)是指日本江户时...

2025-04-15

日本黑帮为什么能公开经营

由于历史原因,二战后日本警察无法管理日本治安需要黑帮力量维持社会运行,因此承认日本黑社会的社会地位,世界上只此一例。今天日本黑社会已经脱离了血淋淋的原始资本积累时期,90年代以后的日本黑社会不会直接参...

2025-04-15

江中鬼是怎样的故事

《江中》是清代小说家蒲松龄创作的文言短篇小说。本文选自朱其铠主编的《全本新注聊斋志异》卷三。本文主要内容是,王圣俞在江的中心遇见的鬼神,常常于夜里在船只附近出没,忽隐忽现给人一种诡异的感觉。原文王圣俞...

2025-04-15

日本人不爱吃肉只吃鱼

食物,是人类维持正常生活所需要的物品,没有食物的话,人类是没有办法长久生存的,而肉类,也是一项很重要的能量来源,现代很多时候并没有什么禁忌,但是在古代,吃肉也有很多禁忌,在中国是这样,古代的日本也是这...

2025-04-15